

Welcome to peact’s documentation!

Peact is a library for reactive programming in python.

Installation

Installation works using distutils, for example:

python setup.py install --user

peact uses cython to build a C extension. If you update
peact/_peact.pyx, you can trigger the cython code to rebuild with
–cython:

python setup.py install --user --cython

Introduction

As an analogy for peact, consider the process of building
software. The predominant build method on UNIX systems involves
Makefiles, which specify files which can be created and “recipes” to
create each file. Each file has a number of dependencies, which the
make system will ensure have been created before the recipe for the
file is run.

Peact is a library which enables a similar method of programming
inside python instead of on the filesystem. Rather than the make
program, peact is the orchestrator of activity. Instead of files,
peact deals with “quantities,” each with a particular name. The
recipes and file contents of make are replaced with python functions
and python objects, respectively.

In other words, peact allows you to string together python functions
which consume and produce quantities. As input values change, nodes in
the graph are updated in response to these changes, potentially
updating other nodes as well.

Reactive Python API

To use peact, create a peact.CallGraph object and
peact.CallGraph.register() peact.CallNode objects
(representing functions) on it. Input values can come from nodes which
themselves have no inputs or by calling
peact.CallGraph.inject() to immediately set values.

After the peact.CallGraph has been prepared,
peact.CallGraph.pump() can be used to step through the graph
and call each registered function which needs to be updated. Values
are stored in the scope member of a peact.CallGraph.

	
class peact.CallNode

	CallNode objects wrap a function for use in a CallGraph.

	Parameters

	
	function – The function (or callable object) to be called when the output is needed or an input changes

	output – A name (or list of names if the function returns a tuple) to bind the function output to. If not given, defaults to the name of the function

	async – True if the function can be called in a background process

	remap – A dictionary mapping function parameter names to scope names

	as_needed – True if the function should not be called when its inputs change, but only as something that needs its value is called

	
class peact.CallGraph

	Handles the reactivity for a set of CallNode objects.

Each CallNode has a set of input (dependency) and output
names. Nodes are added to the graph via
peact.CallGraph.register().

	
clear

	Remove all modules from the call graph

	
inject

	Puts a value or set of values into the list of stored quantities
and marks it as having changed.

Example:

graph.inject(temperature=1.5)
graph.inject({'namespace.value': 13})

	
mark

	CallGraph.mark_input(self, *args)
Marks a quantity for everything that depends on it to be recomputed

	
mark_input

	Marks a quantity for everything that depends on it to be recomputed

	
mark_output

	Marks a quantity for the last node that computes it to be re-run

	
pump

	Step through the graph, calling module functions whose input has
changed or output is required.

Example:

for _ in graph.pump():
 pass

	Parameters

	
	input_names – iterable of names for values that have changed; nodes that depend on these quantities will be re-evaluated. If None, default to the set of marked “dirty” inputs

	output_names – iterable of names to force computation of; nodes that provide these quantities will be re-evaluated. If None, default to the set of marked “dirty” outputs

	async – If True, yield intermediate results whenever an asynchronous module is encountered

	
pump_restore

	Evaluate the graph for a set of given names. Restores the current
state afterward.

	Parameters

	
	names – List of quantity names to compute

	async – If True, compute asynchronously

	kwargs – List of quantities to inject into the scope before computing

	
pump_tick

	Perform a single element of work every time it is called. Intended
for embedding peact.CallNode.pump() into another
event loop.

	
rebuild

	Build the dependency graph for all modules currently in the graph,
as well as data structures for efficient dispatch of data.

	Parameters

	mark_dirty – If True, mark all properties in the graph as needing a recomputation

	
register

	Register a function as part of this graph. Takes the same
parameters as peact.CallNode.

	Returns

	The given function

	
register_deferred

	Registers a list object. This list should contain
peact.CallNode objects and will be consulted
dynamically every time peact.CallGraph.rebuild() is
called.

	Parameters

	target – List object containing peact.CallNode objects

	
register_last

	Register a function as part of this graph, after the last function
that supplies any quantity of the same name. Takes the same
parameters as peact.CallNode.

	Returns

	The given function

	
scope

	

	
unmark

	CallGraph.unmark_input(self, *args)
Voids a recomputation request for a quantity.

	
unmark_input

	Voids a recomputation request for a quantity.

	
unmark_output

	Voids a recomputation request for a quantity.

	
unregister

	Remove the given function from the call graph.

	Parameters

	
	function – The function which should be removed

	rebuild – If True, immediately rebuild the call graph

	
unregister_deferred

	Remove the given dynamic CallNode provider from the graph.

	Parameters

	
	target – The list object which should be removed

	rebuild – If True, immediately rebuild the call graph

Indices and tables

	Index

	Module Index

	Search Page

Index

 C
 | I
 | M
 | P
 | R
 | S
 | U

C

 	
 	CallGraph (class in peact)

 	
 	CallNode (class in peact)

 	clear (peact.CallGraph attribute)

I

 	
 	inject (peact.CallGraph attribute)

M

 	
 	mark (peact.CallGraph attribute)

 	
 	mark_input (peact.CallGraph attribute)

 	mark_output (peact.CallGraph attribute)

P

 	
 	pump (peact.CallGraph attribute)

 	
 	pump_restore (peact.CallGraph attribute)

 	pump_tick (peact.CallGraph attribute)

R

 	
 	rebuild (peact.CallGraph attribute)

 	register (peact.CallGraph attribute)

 	
 	register_deferred (peact.CallGraph attribute)

 	register_last (peact.CallGraph attribute)

S

 	
 	scope (peact.CallGraph attribute)

U

 	
 	unmark (peact.CallGraph attribute)

 	unmark_input (peact.CallGraph attribute)

 	
 	unmark_output (peact.CallGraph attribute)

 	unregister (peact.CallGraph attribute)

 	unregister_deferred (peact.CallGraph attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to peact’s documentation!

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

